The random matrix hard edge: rare events and a transition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion at the random matrix hard edge

We show that the limiting minimal eigenvalue distributions for a natural generalization of Gaussian sample-covariance structures (the “beta ensembles”) are described by the spectrum of a random diffusion generator. By a Riccati transformation, we obtain a second diffusion description of the limiting eigenvalues in terms of hitting laws. This picture pertains to the so-called hard edge of random...

متن کامل

First colonization of a hard-edge in random matrix theory

We describe the spectral statistics of the first finite number of eigenvalues in a newly-forming band on the hardedge of the spectrum of a random Hermitean matrix model. It is found that in a suitable scaling regime, they are described by the same spectral statistics of a finite-size Laguerre-type matrix model. The method is rigorously based on the Riemann-Hilbert analysis of the corresponding ...

متن کامل

Universality in Unitary Random Matrix Ensembles When the Soft Edge Meets the Hard Edge

Unitary random matrix ensembles Z n,N (detM) α exp(−N TrV (M)) dM defined on positive definite matrices M , where α > −1 and V is real analytic, have a hard edge at 0. The equilibrium measure associated with V typically vanishes like a square root at soft edges of the spectrum. For the case that the equilibrium measure vanishes like a square root at 0, we determine the scaling limits of the eig...

متن کامل

Modeling Rare Transition Events

Dynamics in nature often proceed in the form of rare transition events: The system under study spends very long periods of time at various metastable states; only very rarely it hops from one metastable state to another. Understanding the dynamics of such systems requires us to study the ensemble of transition paths between the different metastable states. Transition path theory is a general ma...

متن کامل

Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

Our interest is in the cumulative probabilities Pr(L(t) l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2018

ISSN: 1083-6489

DOI: 10.1214/18-ejp212